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Abstract-- Face Identification System utilize 

the Recognition of faces among non-uniform 

of blur, illumination and pose. The proposed 

methodology for face recognition in the 

presence of space varying motion blur 

comprising of arbitrarily-shaped kernels. We 

model the blurred face as a convex 

combination of geometrically transformed 

instances of the focused gallery face, and 

show that the set of all images obtained by 

non-uniformly blurring a given image forms 

a convex set. We first propose a non-uniform 

blur-robust algorithm by making use of the 

assumption of a sparse camera trajectory in 

the camera motion space to build an energy 

function with l1-norm constraint on the 

camera motion. The framework is then 

extended to handle illumination variations by 

exploiting the fact that the set of all images 

obtained from a face image by non-uniform 

blurring  and changing the illumination 

forms a bi-convex set. Finally, we propose an 

elegant extension to also account for 

variations in pose. 

INDEX TERMS— Face recognition, Face 

database, Non- Uniform of Blur, illumination, 

pose, Sharpness, Sparsity.   

 

 

 

 

INTRODUCTION 

Traditionally, blurring due to camera shake has 

been modeled as a convolution with a single 

blur kernel, and the blur is assumed to be 

uniform across the image.However, it is space-

variant blur that is encountered frequently in 

hand-held cameras. While techniques have 

been proposed that address the restoration of 

non-uniform blur by local space-invariance 

approximation, recent methods for image 

restoration have modeled the motion-blurred 

image as an average of projectively 

transformed images.It is well-known that the 

accuracy of face recognition systems 

deteriorates quite rapidly in unconstrained 

setting. This can be attributed to degradations 

arising from blur, changes in illumination, pose, 

and expression, partial occlusions etc. Motion 

blur, in particular, deserves special attention 

owing to the ubiquity of mobile phones and 

hand-held imaging devices. Dealing with 

camera shake is a very relevant problem 

because, while tripods hinder mobility, 

reducing the exposure time affects image 

quality. Moreover, in-built sensors such as 

gyros and accelerometers have their own 

limitations in sensing the camera motion. In an 

uncontrolled environment, illumination and 

pose could also vary, further compounding the 

problem. The focus of this paper is on 

developing a system that can recognize faces 

across non-uniform (i.e., space-variant) blur, 

and varying illumination and pose.Face 

recognition systems that work with 
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focused images have difficulty when presented 

with blurred data. Approaches to face 

recognition from blurred images can be broadly 

classified into four categories. Deblurring-based 

in which the probe image is first deblurred and 

then used for recognition. However, deblurring 

artifacts are a major source of error especially 

for moderate to heavy blurs.  

(i) Joint deblurring and recognition, the 

flip-side of which is computational 

complexity.  

(ii) Deriving blur-invariant features for 

recognition. But these are effective 

only for mild blurs.  

(iii) The direct recognition approach in 

which reblurred versions from the 

gallery are compared with the blurred 

probe image. It is important to note 

that all of the above approaches 

assume a simplistic space-invariant 

blur model. For handling 

illumination, there have mainly been 

two directions of pursuit based on (i) 

the 9D subspace model for face and 

(ii) extracting and matching 

illumination insensitive facial 

features. Tan et al. combine the 

strengths of the above two methods 

and propose an integrated framework 

that includes an initial illumination 

normalization step for face 

recognition under difficult lighting 

conditions.  

A subspace learning approach using 

image gradient orientations for illumination and 

occlusion-robust face recognition has been 

proposed. Practical face recognition algorithms 

must also possess the ability to recognize faces 

across reasonable variations in pose. Methods 

for face recognition across pose can broadly be 

classified into2D and 3D techniques.  

 

II.  MOTION BLUR MODEL FOR FACES 

A. Multiscale Implementation 

Since we are fundamentally limited by the 

resolution of the images, having a very fine 

discretization of the transformation space T 

leads to redundant computations. Hence, in 

practice, the discretization is performed in a 

manner that the difference in the displacements 

of a point light source due to two different 

transformations from the discrete set T is at least 

one pixel. It should be noted that since the TSF 

is defined over 6 dimensions, doubling their 

sampling resolution increases the total number 

of poses, NT , by a factor of 2
6
. As the number of 

transformations in the space T increases, the 

optimization process becomes inefficient and 

time consuming, especially since only a few of 

these elements have non-zero values. Moreover, 

the resulting matrix A will have too many 

columns to handle. We resort to a multiscale 

framework to solve this problem. We perform 

multiscaling in 6D. We select the search 

intervals along each dimension according to the 

extent of the blur we need to model, which is 

typically a few pixels for translation and a few 

degrees for rotation. 

 

B. Face Recognition Across Blur 

Suppose we have M face classes with one 

focused gallery face fm for each class m, where 

m = 1,2,..., M. Let us denote the blurred probe 

image which belongs to one of the M classes by 

g. Given fms and g, the task is to find the identity 

m∗ ∈ {1,2,..., M} of g. Based on the discussions  

hTm = argmin||W(g − AmhT) ||hT||1hT 

subject to hT ≥ 0. 

Next, we blur each of the gallery images with 

the corresponding optimal TSFs hTm. For each 

blurred gallery image and probe, we divide the 

face into non-overlapping rectangular, extract 

LBP histograms independently from each patch 

and 
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from the TSF intervals listed in Setting 1 - 

Setting 5 of Section III-C. 

 

C. Experiments 

We evaluate the proposed algorithm NU-MOB 

on the standard and publicly available FERET 

database. Since this database contains only 

focused images, we blur the images 

synthetically to generate the probes. The camera 

motion itself is synthesized so as to yield a 

connected path in the motion space. The 

resulting blur induced mimics the real blur 

encountered in practical situations. In all the 

experiments presented in this paper, we use 

grayscale images resized to 64 × 64 pixels and 

we assume only one image per subject in the 

gallery.To evaluate our NU-MOB algorithm, we 

use the ba and bj folders in FERET, both of 

which contain 200 images with one image per 

subject. We use the ba folder as the gallery. Five 

different probe sets, each containing 200 

images, are obtained by blurring the bj folder 

using the settings mentioned above.  The 

lighting and the pose are the same for both 

gallery and probe since the objective here is to 

study our algorithm‘s capability to model blur. 

Notice, however, that small facial expression 

changes exist between the gallery and the probe, 

but the weighting matrix makes our algorithm 

reasonably robust to these variations. We set the 

number of scales in the multiscale 

implementation to 3 as it offered the best 

compromise between running time and 

accuracy. 

 

 

Fig. 2. Effect of increasing the blur. (Refer to 

the text for blur settings along the X-axis.) 

 

1) Effect of Increasing the Blur: We now 

examine our algorithm‘s performance as the 

extent of the blur is increased. The gallery, as 

before, is the ba folder. We select random 

transformations from the following nine sets of 

intervals to blur the images in the bj folder and 

generate the probes.  

 

2) Effect of Underestimating or 

Overestimating the TSF Search Intervals: In 

all the above experiments, we have assumed that 

the TSF limits are known, and we used the same 

transformation intervals as the ones used for 

synthesizing the blur, while attempting 

recognition. Although in some applications we 

may know the extent of the blur, in many 

practical settings, we may not. Hence, we 

perform the following experiments to test the 

sensitivity of our algorithm to the TSF search 

intervals. 

 

Fig. 1. Sample images from ba and bj folders in the FERET database. (a) Gallery, (b) probe, (c)-(g) probe 

blurred synthetically using random transformations 
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Fig. 3.Effect of underestimating or overestimating the TSF search intervals. 

(Refer to the text for blur settings along the X-

axis.) 

III. FACE RECOGNITION ACROSS 

BLUR, ILLUMINATION, AND POSE 

Poor illumination is often an accompanying 

feature in blurred images because larger 

exposure times are needed to compensate for the 

lack of light which increases the chances of 

camera shake. Pose variation is another 

challenge for realizing the true potential of face 

recognition systems in practice. This section is 

devoted to handling the combined effects of 

blur, illumination and pose. 

IV. FACE RECOGNITION ACROSS 

BLUR, ILLUMINATION 

A. Handling Illumination Variations 

To handle illumination variations, we modify 

our basic blur-robust algorithm (NU-MOB) by 

judiciously utilizing the following two results: 

• In the seminal work, it has been shown that 

if the human face is modeled as a convex 

Lambertian surface, then there exists a 

configuration of nine light source directions 

such that the subspace formed by the images 

taken under these nine sources is effective 

for recognizing faces under a wide range of 

lighting conditions. Using this ―universal 

configuration‖ of lighting positions, an 

image f of a person under any illumination 

condition can be written as 

9f = αi fi i=1 

where αi,i = 1,2,...,9 are the corresponding 

linear coefficients. The fis, which form a 

basis for this 9D subspace, can be generated 

using the Lambertian reflectance model as 

fi(r,c) = ρ(r,c) max(n(r,c)
T 

si,0) 

  where ρ and n are the albedo and the 

surface normal, respectively, at the pixel 

location (r,c), and s is the illumination 

direction. We approximate 

 

the albedo ρ with a frontal, sharp, and well-

illuminated gallery image captured under 

diffuse lighting, and use the average 

(generic) 3D face normals  for n. 

• It has been shown that for the case of space-

invariant blur, the set of all images under 

varying illumination and blur forms a bi-

convex set, i.e., if we fix either the blur or 

the illumination, the resulting subset is 

convex.  

B. Handling Pose Variations 

Most face recognition algorithms are robust to 

small variations in pose (∼ 15°), but the drop in 

performance is severe for greater yaw and pitch 

angles. In our experiments, we found this to be 

true of our MOBIL algorithm also. The reason 

behind this drop in accuracy is that intra-subject 

variations caused by rotations are often larger 

than inter-subject differences. Clearly, there is 

no overstating the 

 

Fig. 3. Example images of a subject from the 

PIE database under new poses. The images in 

(a) and (b) are synthesized from the frontal 

gallery image using the average face depthmap 

shown in (c).For midable nature of the problem 

at hand - recognizing faces across blur, 
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illumination and pose. To this end, we next 

propose our MOBILAP algorithm which, using 

an estimate of the pose, matches the incoming 

probe with a synthesized non-frontal gallery 

image. To the best of the authors‘ knowledge, 

this is the first ever effort to even attempt this 

compounded scenario. 

 

V. EXPERIMENT 

Using the PIE dataset, we further go on to show,  

how our MOBILAP algorithm can handle even 

pose variations. Note that, as before, we blur the 

images synthetically to generate the probes as 

these two databases do not contain motion blur 

MOBILAP‘s results on the Labeled Faces in the 

Wild dataset (which is a publicly available real 

dataset) using the ‗Unsupervised‘ protocol. We 

also evaluate the performance of MOBILAP on 

our own real dataset captured using a handheld 

camera that contains significant blur, 

illumination and pose variations, in addition to 

small occlusions and changes in facial 

expressions. 

 

A. Recognition Across Blur and Illumination 

We first run our MOBIL algorithm on the 

illum subset of the PIE database which consists 

of images of 68 individuals under different 

illumination conditions. We use faces with a 

frontal pose (c27) and frontal illumination ( f11) 

as our gallery. The probe dataset, which is also 

in the frontal pose (c27), is divided into two 

categories- 1) Good Illumination (GI) consisting 

of subsets f06, f07, f08, f09, f12 and f20 (6 different 

illumination conditions) and 2) Bad Illumination 

(BI) consisting of subsets f05, f10, f13, f14, f19 and 

f21 (6 different illumination conditions)B. 

Recognition Across Blur, Illumination, and Pose 

 

TABLE I Recognition results for mobilap on 

our real dataset along with comparisons 

  

  

  

  

  

  

  

  

  

  

  
movement of the subjects during image capture, 

and, therefore, a subset of these images could 

possibly have both camera and object motion. 

We manually cropped the faces and resized 

them to 64×64 pixels. Some representative 

images from the gallery and probe are given. 

Observe that, as compared to the gallery, the 

probes can be either overlit or underlit 

depending on the setting under which they were 

captured. We generate the nine illumination 

basis images for each image in the gallery and 

then run MOBILAP. It has been pointed out that 

in most practical scenarios, a 3D TSF is 

sufficient to explain the general motion of the 

camera. In view of this observation and in 

consideration of computation time, we select the 

search intervals for the TSF as [−4 : 1 : 4] pixels 

for in-plane translations, and [−2° : 1° : 2°] for 

in-plane rotations. The recognition results are 

presented in Table I. Although the accuracy of 

all the methods drop due to the unconstrained 

and challenging nature of this dataset, the 

effectiveness of the proposed technique in 

advancing the state-of-the-art in handling non-

uniform blur, illumination, and pose in practical 

scenarios is reaffirmed yet again. 
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B. Recognition Across Blur, Illumination and 

Pose 

Finally, we take up the very challenging case 

of allowing for pose variations in addition to 

blur and illumination. We once again use the 

PIE dataset. We begin by selecting four near-

frontal poses (pitch and yaw angles within 

∼15°) and explore the robustness of MOBIL 

itself to small variations in pose. As before, the 

camera position c27 (frontal pose) and flash 

position f11 (frontal illumination) constitute the 

gallery. In this experiment, however, the probe 

set, divided into good and bad illumination 

subsets, contains the four nearfrontal poses c05 

(−16° yaw), c07 (0° yaw and −13° tilt), c09 (0° 

yaw and 13° tilt) and c29 (17° yaw). 

[hTm,αm,i] = argmin||W(g − αiAm,ihT)

||hT||1 hT,αi i=1 subject to hT ≥ 0  

Next, we select differently illuminated probes 

in two non-frontal poses c37 (−31° yaw) and c11 

(32° yaw). See Fig. 9 columns 5 and 6. Once 

again, the frontal camera position c27 and flash 

position f11 constitute the gallery. For such large 

changes in pose, we found that MOBIL returned 

recognition rates less than 15%. 

VI. CONCLUSIONS 

The proposed a methodology to perform face 

recognition under the combined effects of non-

uniform blur, illumination,and pose. We showed 

that the set of all images obtained by non-

uniformly blurring a given image using the TSF 

model is a convex set given by the convex hull of 

warped versions of the image. Capitalizing on this 

result, we initially proposed a novel non-uniform 

motion blur-robust face recognition algorithm. We 

then showed that the set of all images obtained 

from a given image by non-uniform blurring and 

changes in illumination forms a bi-convex set, and 

used this result to develop our non-uniform motion 

blur and illumination-robust algorithm MOBIL. 

We then extended the capability of MOBIL to 

handle even non-frontal faces by transforming the 

gallery to a new pose. We established the 

superiority of this method called MOBILAP over 

contemporary techniques. Extensive experiments 

were given on synthetic as well as real face data. 

The limitation of our approach is that significant 

occlusions and large changes in facial expressions 

cannot be handled.        
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